If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12t^2-56t+65=0
a = 12; b = -56; c = +65;
Δ = b2-4ac
Δ = -562-4·12·65
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-4}{2*12}=\frac{52}{24} =2+1/6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+4}{2*12}=\frac{60}{24} =2+1/2 $
| 7x–2=5x+18 | | 3/4(x-4)=x-3 | | x/3+3/2=2x/5-1 | | 6x-2x=3x+47 | | 6x(5-7)=7(x+3) | | 2x-3x-4/7=4x-27/3-3 | | -m+(3m-6m)=8-14 | | 0.25x+0.1x=0.4x-5 | | 6a-12=4a+ | | (x+1)/2+4=17 | | 8(2x-5)-6(3x-77=1 | | 10(y–4)–2(y–9)–5(y+4)=0 | | 6x-2x=124 | | (3x+2)(5x-6)=0 | | 0=(x/2+170)^2 | | 7x-200=x-2 | | 1.2x+x=14+1 | | 2(3x-8)=10(3x-8) | | 3(3x-7)=6(3x-4) | | 3a+8=9a=16 | | 3p-5=4p+9 | | 3(x+2)-2(x=1)=7 | | 8(6x-4)=7(5x-7) | | 10t-6=0 | | 2y-1/2=1/3 | | 3x+4x=9.5 | | 3m=- | | 3x+4x=9 | | 23(-2c+3)=2(c+5)+c | | X2-7y=10 | | 5(6x+21=255 | | 52-(3c+4)=(c+6)+6 |